The following example was given in class on Jan 12, 2021.
E_{2}

$$
\begin{aligned}
& A(1,2,3) \\
& B(2,4,2) \\
& C(0,1,1) \\
& D(2,5,-1)
\end{aligned}
$$

Find the coordinates of B.
Although one can do this by fording the equation of the lines $A C, B D$ and their intersection, here we use a slightly different method.

Int $a=\overrightarrow{E A}$

$$
b=\overrightarrow{B D}
$$

Because A, C, E are on the same line, $a=k \overrightarrow{A C}$ Because B, D, E are on the same line, $b=\ell \overrightarrow{B D}$.
we have

$$
a+\overrightarrow{A D}=\overrightarrow{E A}+\overrightarrow{A D}=\overrightarrow{E D}=6 .
$$

Thus,

$$
k \overrightarrow{A C}+\overrightarrow{A D}=l \overrightarrow{B D}
$$

Note that $\quad \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=\langle-1,-1,-2\rangle$

$$
\begin{aligned}
& \overrightarrow{A B}=\langle 1,3,-4\rangle \\
& \overrightarrow{B O}=\langle 0,1,-3\rangle
\end{aligned}
$$

Then

$$
\begin{aligned}
& k\langle-1,-1,-2\rangle+\langle 1,3,-4\rangle=l\langle 0,1,-3\rangle \\
& \left\{\begin{array} { l }
{ - k + 1 = 0 } \\
{ - k + 3 = l } \\
{ - 2 k - 4 = - 3 l }
\end{array} \leadsto \left\{\begin{array}{l}
k=1 \\
l=2
\end{array}\right.\right.
\end{aligned}
$$

Then $\overrightarrow{E A}=a=\overrightarrow{A C}=\langle-1,-1,-2\rangle$.
Let (x, y, z) be the coordinates of E. Then

$$
\overrightarrow{E A}=\langle 1-x, 2-y, 3-z\rangle .
$$

We get

$$
\left\{\begin{array} { l }
{ 1 - x = - 1 } \\
{ 2 - y = - 1 } \\
{ 3 - z = - 2 }
\end{array} \leadsto \left\{\begin{array}{l}
x=2 \\
y=3 \\
z=5
\end{array}\right.\right.
$$

